Your Genes and Your Health
http://bio84.stanford.edu/

Stem Cell Therapies
http://bio84.stanford.edu/07%20Stem%20Cell%20Therapy.html

Doug Brutlag, Professor Emeritus of Biochemistry & Medicine (by courtesy)
Stanford University School of Medicine

© Doug Brutlag 2016
Turning stem cells into therapies

Stem cells have the potential to treat a wide range of diseases, including diabetes, neurodegenerative diseases, spinal cord injury, and heart disease. Learn why these cells are such a powerful tool for treating disease as well as what the current hurdles are before new therapies can become available.

- How can stem cells treat disease?
- What diseases could be treated by stem cell research?
- How can I learn more about CIRM-funded research in a particular disease?
- Are there any stem cell-based therapies currently available?
- When will therapies based on embryonic stem cells become available?
- What about the therapies that are available overseas?
- Why does it take so long to create new therapies?
 - Differentiation
 - Testing the therapy
 - Propensity for the cells to cause tumors
 - Immune rejection of the cells
 - Growing the cells in consistent conditions
How can stem cells treat disease?

The most common way of thinking about stem cells treating disease is through a stem cell transplant. Embryonic stem cells are differentiated into the necessary cell type, then those mature cells replace tissue that is damaged by disease or injury. This type of treatment could be used to replace neurons damaged by spinal cord injury, stroke, Alzheimer's disease, Parkinson's disease, or other neurological problems. Cells grown to produce insulin could treat people with diabetes and heart muscle cells could repair damage after a heart attack. This list could conceivably include any tissue that is injured or diseased.

These are all exciting areas of research, but embryonic stem cell-based therapies go well beyond cell transplants. What researchers learn from studying how embryonic stem cells develop into heart muscle cells, for example, could provide clues about what factors may be able to directly induce the heart muscle to repair itself. The cells could be used to study disease, identify new drugs, or screen drugs for toxic side effects. Any of these would have a significant impact on human health without transplanting a single cell.

What diseases could be treated by stem cell research?

In theory, there's no disease that is exempt from a possible treatment that comes out of stem cell research. Given that researchers may be able to study all cell types via embryonic stem cells, they have the potential to make breakthroughs in any disease.

How can I learn more about CIRM-funded stem cell research in a particular disease?

CIRM has created disease pages for many of the major diseases being targeted by stem cell scientists. You can find those disease pages here.
FDA Warns About Stem Cell Claims

Search the Consumer Updates Section

Get Consumer Updates by E-mail
Consumer Updates RSS Feed
Share copies of this article (344 KB)

On this page
- Regulation of Stem Cells
- Advice for Consumers
- Thwarting a Stem Cell Scheme

Stem cell therapies offer the potential to treat diseases or conditions for which few treatments exist.

Stem cells, sometimes called the body’s “master cells,” are the precursor cells that develop into blood, brain, bones and all of your organs. Their promise in medical treatments is that they have the potential to repair, restore, replace and regenerate cells that could then be used to treat many medical conditions and diseases.

But the Food and Drug Administration (FDA) is concerned that the hope that researchers hope that stem cells will one day be effective in the treatment of many medical conditions and diseases.
The Vancouver Sun, Op Ed: Gordie Howe’s Pursuit of Stem Cell Treatment Abroad is an Awakening for Continued Education and Informed Choice
05 February, 2015
An opinion piece by Drs. Judy Illes and Fabio Rossi, available here. Dr. Illes is Canada research chair in neuroethics, professor of neurology and director of the National Core for Neuroethics, Faculty of Medicine, University of British Columbia. Dr. Rossi is Canada research chair in regenerative medicine and professor of Medical Genetics Biomedical Research Centre, UBC. Both are investigators with the Stem Cell Network.
Read more

ISSCR 2015 Annual Meeting Abstract Submission Extended
05 February, 2015
Read more

Member Spotlight on Beck Tsai, PhD
26 January, 2015
CIRM Postdoctoral Scholar at the City of Hope National Medical Center and podcast enthusiast Dr. Becky Tsai aims to develop tools that contribute to improving patient diagnosis and treatment. She also aids in the personal development of Southern California’s youth. Find out how and why in this month’s Member Spotlight.
Read more

The International Society for Stem Cell Research Announces the 2015 Recipients of the McEwen Award for Innovation, the ISSCR-BD Biosciences Outstanding Young Investigator and the ISSCR Public Service Awards
20 January, 2015
Find out what's possible.
Know what to ask.

We have all heard about the extraordinary promise that stem cell research holds for the treatment of human diseases. Clinics all over the world claim to offer stem cell treatments for a wide variety of conditions. But are all of these treatments likely to be safe and effective?

The ISSCR provides information to help you evaluate these claims. Learn more about what this site can provide. Please check back in January 2015 for new and expanded resources.

View CBS’ 60 Minutes (US) 2010 segment, "21st Century Snakeoil"
What are stem cells? How are they regulated?

Stem cells are cells that have the ability to divide and develop into many different cell types in the body during early life and growth. Stem cells may also help repair the body by dividing to replenish cells that are damaged by disease, injury, or normal wear. When a stem cell divides, each new cell has the potential either to remain a stem cell or to become another type of cell with a more specialized function, such as a nerve cell, a skin cell, or a red blood cell.

Three types of stem cells have been identified:

1. adult stem cells
2. human embryonic stem cells
3. induced pluripotent stem cells

These three types of stem cells share properties:

- They are capable of surviving over long periods and divide to make additional stem cells.
- They are unspecialized ("blank slates" that can become specific types of cells).
- They can develop into specialized cell types (cells that do specific work in the body).

Adult stem cells can be found throughout the body. They are found as unspecialized cells among the specialized cells in tissues and organs as well as in umbilical cord blood and peripheral blood (that is, hematopoietic stem cells). An adult stem cell can either divide to make more adult stem cells, or differentiate to produce some or all of the major specialized cell types of the tissue or organ.
Stem Cell Promise & Stem Cell Therapies
http://www.cirm.ca.gov/our-progress/stem-cells-therapies

- Parkinson’s Disease with iPSCs (Michael J. Fox Foundation)
- Spinal Cord Injury with human embryonic stem cells (hESCs)
- Sickle Cell, Thalassemias, hemophilia and other blood diseases with iPSCs (Matthew Porteus, Stanford)
- **Bone Marrow Transplants** (BMT) & hematopoietic stem cell therapy (HCT) (Judith Shizuru)
 - Lymphomas and thymomas
 - Hematopoietic cells
 - Metastatic cancers of other origins
- Autoimmune Diseases with hematopoietic stem cells (HSCs)
 - Rheumatoid arthritis
 - Systemic Lupus Erythematosus
 - Type 1 diabetes mellitus
 - Multiple sclerosis
 - Pernicious anemia
Parkinson’s Treatment with Fetal Stem Cells

- KQED Parkinson’s Documentary
- My Father, My Brother and Me
Fetal Cell Transplants Can Cure Parkinson’s

David Iverson’s Frontline Film: My Father, My Brother and Me
Spinal Cord Injury
Pathology at the Lesion
GRNOPC1 Improves Locomotor Behavior after Spinal Cord Injury

hESC-Derived Oligodendrocyte Progenitors

Control

GRNOPC1

Journal of Neuroscience, May 11, 2005
Spinal Cord Injury
http://www.geron.com/GRNOPC1Trial/
GRNOPC1 Induces Remyelination after Spinal Cord Lesions in Rodents
GRNOPC1 Promotes Neural Outgrowth

Concentrations of Neurotrophic Proteins in GRNOPC1 Conditioned Medium

Midkine 7.7 ± 2.3 ng/ml \((n = 6) \) neurite growth-promoting factor 2

Activin A 13.2 ± 1.6 ng/ml \((n = 6) \) growth & differentiation factor in TGF family

BDNF 48 ± 13 pg/ml \((n = 9) \) brain-derived neurotrophic factor

TGF-β2 95 ± 18 pg/ml \((n = 9) \) transforming growth factor-beta 2

HGF 1.2 ± 0.5 ng/ml \((n = 5) \) hepatocyte growth factor
Human Embryonic Stem Cell (hESC) Based Therapy

- hESC Starting Material
- Differentiation
- Formulation for Transplantation
- Central Manufacturing Facility
- Frozen Final Product
- Hospital
GRNOP1 Phase 1 Multi-Center Spinal Cord Injury Trial

- Open Label Trial
- Subacute, Functionally Complete Spinal Cord Injury with a Neurological Level of T3 to T10
- 2×10^6 Cells
- Transplant 7-14 Days Post Injury
- Temporary Immunosuppression with Low Dose Tacrolimus
- Primary Endpoint: Safety
 - Neurological
 - Overall
- Secondary Endpoint: Efficacy
 - ASIA Sensory Score
 - Lower Extremity Motor Score
Clinical Trials Database
http://clinicaltrials.gov/

ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of human participants conducted around the world. Learn more about clinical studies and about this site, including relevant history, policies, and laws.

ClinicalTrials.gov currently lists 209,194 studies with locations in all 50 States and in 192 countries.

Search for Studies
Example: "Heart attack" AND "Los Angeles"
stem cells Search

Search Help
• How to search
• How to find results of studies
• How to read a study record

Locations of Recruiting Studies

Total N = 37,436 studies
(Data as of February 23, 2016)

• See more trends, charts, and maps

For Patients and Families
• How to find studies
• See studies by topic
• Learn about clinical studies
• Learn more

For Researchers
• How to submit studies
• Download content for analysis
• About the results database
• Learn more

For Study Record Managers
• Why register?
• How to register your study
• FDAAA 801 requirements
• Learn more

Learn More
• Tutorials for using ClinicalTrials.gov
• Glossary of common site terms
• For the press
• Using our RSS feeds

Deborah Zarin, Director, Hum Bio Grad.
Clinical Trials Database

https://clinicaltrials.gov/

Search Results

4723 studies found for: stem cells | Exclude Unknown

Modify this search | How to Use Search Results

<table>
<thead>
<tr>
<th>Rank</th>
<th>Status</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not yet recruiting</td>
<td>Treatment of Atrophic Nonunion Fractures by Autologous Mesenchymal Stem Cell Percutaneous Grafting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Nonunion Fracture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interventions: Biological: Mesenchymal Stem Cells; Other: Culture medium without MSC.</td>
</tr>
<tr>
<td>2</td>
<td>Completed</td>
<td>Haploidentical Stem Cell Transplant for Treatment Refractory Hematological Malignancies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions: Acute Lymphoblastic Leukemia (ALL); Acute Myeloid Leukemia (AML); Secondary AML; Myelodysplastic Syndrome (MDS); Secondary MDS; Chronic Myeloid Leukemia; Juvenile Myelomonocytic Leukemia (JMML); Paroxysmal Nocturnal Hemoglobinuria (PNH); Lymphoma, Non-Hodgkin; Hodgkin Disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interventions: Procedure: Stem Cell Transplantation; Device: Miltenyi Biotech ClinMACS; Drug: Systemic chemotherapy and antibodies</td>
</tr>
<tr>
<td>3</td>
<td>Completed</td>
<td>CArdiosphere-Derived aUtologous Stem CElls to Reverse ventricUlar dySFunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conditions: Recent Myocardial Infarction; Ventricular Dysfunction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervention: Biological: Autologous stem cell infusion</td>
</tr>
<tr>
<td>4</td>
<td>Recruiting</td>
<td>Reversal of Type 1 Diabetes in Children by Stem Cell Educator Therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Type 1 Diabetes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intervention: Device: Stem Cell Educator</td>
</tr>
<tr>
<td>Rank</td>
<td>Status</td>
<td>Study</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Not yet recruiting</td>
<td>Treatment of Atrophic Nonunion Fractures by Autologous Mesenchymal Stem Cell Percutaneous Grafting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Nonunion Fracture Interventions: Biological: Mesenchymal Stem Cells; Other: Culture medium without MSC.</td>
</tr>
<tr>
<td>2</td>
<td>Recruiting</td>
<td>Reversal of Type 1 Diabetes in Children by Stem Cell Educator Therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Type 1 Diabetes Intervention: Device: Stem Cell Educator</td>
</tr>
<tr>
<td>3</td>
<td>Recruiting</td>
<td>Allogeneic Mesenchymal Stem Cell Transplantation in Tibial Closed Diaphyseal Fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Tibial Fracture Interventions: Biological: Mesenchymal stem cell injection; Biological: Placebo</td>
</tr>
<tr>
<td>4</td>
<td>Recruiting</td>
<td>Stem Cell Transplantation for Stiff Person Syndrome (SPS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condition: Stiff Person Syndrome Intervention: Biological: Autologous Hematopoietic Stem Cell Transplantation</td>
</tr>
<tr>
<td>Rank</td>
<td>Status</td>
<td>Study</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Recruiting</td>
<td>Study the Safety and Efficacy of Bone Marrow Derived Autologous Cells for the Treatment of Spinal Cord Injury</td>
</tr>
<tr>
<td>3</td>
<td>Recruiting</td>
<td>Safety and Efficacy of Autologous Mesenchymal Stem Cells in Chronic Spinal Cord Injury</td>
</tr>
</tbody>
</table>
Clinical Trials of Hematopoietic Stem Cell Transplantation

Judith A. Shizuru, M.D., Ph.D.
Division of Blood and Marrow Transplantation
Stanford University Medical Center
Bone Marrow Transplants to Cure Lymphomas / Thymomas

- Whole Body Irradiation to remove cancer and entire immune system
 - Also total lymphoid irradiation with antithymocyte serum
- Injection of bone marrow from a well matched donor to re-establish immune system
- Regulation of immune response to prevent graft versus host reaction.
- Autologous donation possible if one can purify and remove tumor cells, enriching for stem cells.
- Allogeneic donors have advantage of graft versus tumor reaction to kill any remaining tumor cells.
- Allogeneic donors have the disadvantage of graft versus host reaction if they are not well matched.
Autologous vs. Allogeneic Transplants

Autologous
- Unfractionated bone marrow or mobilized blood
- Donor blood formation, graft-vs-tumor effect
- Purify from Tumor cells
- Transplant

Allogeneic
- Healthy Donor
- Unfractionated bone marrow or mobilized blood
- Transplant
- Donor blood formation, graft-vs-tumor effect

Judith Shizuru
Complications of Allogeneic Transplants

Transplant related mortality = 10 - 15%

- Regimen related toxicity
- Infectious complications
- Engraftment failure
- Graft-versus-host disease
Regulation of hematopoiesis by cytokines
http://www.biocarta.com/pathfiles/h_stemPathway.asp
Isolation of Hematopoietic Stem Cells

Mouse
- Sca-1
- Thy-1
- c-Kit

Man
- CD34
- Thy-1

Judith Shizuru
Isolation of Hematopoietic Stem Cells

MOUSE

- Thy1lo [CD90]
- Sca-1$^+$
- SlamF1

Negative for:
- B220
- Mac-1
- Gr-1
- CD3, 4, 8
- Ter119
- Flk2
- CD34

MAN

- Thy1$^+$ [CD90]
- CD34$^+$

Negative for:
- CD10
- CD14
- CD15
- CD16
- CD19
- CD20
- CD38
- CD 3, 4, 8
- Glycophorin A

Courtesy Irv Weissman
Isolation of Pure Hematopoietic Stem Cells

Collect bone marrow cells

Deplete mature blood cells by labeling with magnetic antibodies

Sort stem cells

Lineage stain

magnet

HSC enriched cells

HSC stain

Courtesy Irv Weissman
Fluorescent Activated Cell Sorter (FACS) Herzenberg & Herzenberg
Purified Hematopoietic Stem Cells are 2000 Times More Effective in Transplants

% Surviving Animals

0 20 40 60 80 100

Number of Cells Transplanted

10^1 10^2 10^3 10^4 10^5

Unfractionated Bone Marrow

Courtesy Irv Weissman
Why Transplant Purified Allogeneic HSCs?

Donated bone marrow

Unfractionated bone marrow

Purified stem cells

∅GVHD

∅immunosuppression

Judith Shizuru
Hematopoietic Stem Cell Therapy for Mouse Multiple Sclerosis

No Immunization

MOG Immunization
Partial Chimerism Results in Disease Amelioration

![Graph showing mean clinical score over time for TBI and TLI + ATS treatments.]

- **TBI & HSC**
 - Mean clinical score over time with red and blue lines indicating different phases of treatment.

- **TLI + ATS**
 - Similar graph to TBI & HSC with additional markers indicating TLI + ATS phases.

Spinal Cord Histology

- Increased macrophages
- Subpial demyelination
- Axon depletion

- Normal
- Intact myelin
- Intact axons

Judith Shizuru
Other Applications of Hematopoietic Stem Cell Transplantation

• Treatment of autoimmune disease
 − Patients treated with bone marrow transplants are often cured of autoimmune disease
 − Bone marrow transplant donors with autoimmune disease can pass the disease on to recipients

• Organ tolerance induction
 − Mice receiving organ transplant and HSC transplant together are tolerant and no rejection occurs. No immune suppressants are needed.

• Very high dose chemotherapy
 − Breast caner patients receive very high does chemotherapy that kills tumor and immune system.
 − Autogenic hematopoietic stem cell transplants recover patient’s immune system.
Combined HSC & islet transplantation

AKR MHC-mismatched donors

Diabetic NOD

Day -7,-1 anti-ASGM1
Day -3,2,1 anti-CD4

Follow for:
- Hyperglycemia
- Chimerism
- Survival

Day 0 - AKR HSC Txp & XRT
Day +1 - islet txp
Treatment of Diabetic Mice (NOD) with Hematopoietic Stem Cell Transplants

Diabetes free (%)

Months after birth

- NOD male controls
- NOD female controls
- NOD WBM → NOD
- NOD HSC → NOD
- AKR HSC → NOD

Judith Shizuru
Hematopoietic Cell Treatment Coupled with High Dose Breast Cancer Chemotherapy

Stage Four Metastatic Breast Cancer

Müller et al. (2011) Biol. Blood Marrow Transplant